A1

Working Group A | Metallurgical joint

 
 
a1_spp1640

Magnetic pulse welding: Targeted manipulation of weld seam formation

Prof. Dr.-Ing. A. Erman Tekkaya, TU Dortmund
Prof. Dr.-Ing. Eckhard Beyer, TU Dresden

 
 

Application:

Magnetic Pulse Welding (MPW) is a joining process that is advantageous for the generation of dissimilar metal joints. It is based on the plastic deformation of at least one joining partner by electromagnetic fields. Typically, the process is finished within a few microseconds.

 
 

Principle:

In this process, high voltage capacitors are discharged via a tool coil resulting in a damped, sinusoidal current with an amplitude of several hundred kiloamperes. Alternating magnetic fields arise in the vicinity of the coil. If an electroconductive ('flyer') part is positioned in this area, an opposing secondary current is induced in this part. Consequently, high Lorentz forces act on the flyer, leading to an acceleration away from the coil (Fig. 1b). In case of a tube, it gets compressed under forming velocities of more than 200 meters per second. After passing the joining gap a it collides with the second metallic joining partner, the 'parent'. Under appropriate collision conditions (Fig. 1a) a metallurgical bond is formed (Fig. 1c). A characteristic feature is the wavy interface resulting from the heavy plastic deformations (Fig. 1d). Apart from Joule heating and internal friction of the forming process, no external heat is transferred into the joining zone. By this, the formation of intermetallic compounds which might deteriorate the weld strength can be limited to an uncritical minimum, even for metals with dissimilar thermal properties.

 
 
Figure 1: Magnetic pulse welding by electromagnetic compression. a) Collision conditions, b) Process principle, c) Joint between aluminum and steel, d) Wavy interface, e) Opto-electrical monitoring of the flash, f) Lower welding limits in the angle-velocity-plane
Figure 1: Magnetic pulse welding by electromagnetic compression. a) Collision conditions, b) Process principle, c) Joint between aluminum and steel, d) Wavy interface, e) Opto-electrical monitoring of the flash, f) Lower welding limits in the angle-velocity-plane
 
 

Research activities:

To ensure a sound weld seam formation, both the collision angle β and the axial or radial velocity component, respectively, have to be adjusted properly. Therefore, a new optical measuring device was invented during the past project period. The characteristic light flash is monitored with the help of phototransistors (Fig. 1b) and thus, the impact time ti and the radial collision velocity vi,r can be determined (Fig. 1e).

In the current project period, the measurement system is developed further in order to determine the axial velocity component vc , the collision angle β and to correlate the weld seam quality with the light intensity curve. Thus, the development of physical models that describe the weld formation is supported. Afterwards, the identified mechanism shall be enhanced in order to decrease the necessary input energy and to increase the range of weldable material combinations and geometries. Furthermore, the process robustness is evaluated and the welding quality is analyzed within nondestructive tests.

The Institute of Forming Technology and Lightweight Components (IUL) of TU Dortmund University and the Institute of Manufacturing Technology (IF) of TU Dresden cooperate closely within this project. A comprehensive investigation of the MPW process is enabled by the complementary expertise of both institutes – forming and joining technology on the part of the IUL and joining technology and microstructure on the part of the IF – and by the diverse equipment of the institutes regarding pulse generators with high and low discharge frequencies. The research activities are supported by a close cooperation with Fraunhofer IWS.

 
 

Publications:

2019   
  Effect of the Forming Behavior on the Impact Flash during Magnetic Pulse Welding of Tubes Bellmann, J.; Ueberschär, F.; Lueg-Althoff, J.; Schulze, S.; Hahn, M.; Beyer, E.; Tekkaya, A. E.
In Korkolis, Y. P. et al. (Eds.): 13th International Conference on Numerical Methods in Industrial Forming Processes, Proceedings of NUMIFORM 2019. Portsmouth (New Hampshire), 2019.
  Magnetic pulse welding of tubular parts Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Hahn, M.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Galdos, L. et al. (Eds.), ESAFORM Conference on Material Forming, Proceedings of the ESAFORM 2019. Vitoria-Gasteiz, Spain, 2019: AIP Publishing (AIP Conference Proceedings), p. 50015. DOI: 10.1063/1.5112579.
  Thermal Effects in Dissimilar Magnetic Pulse Welding Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Hahn, M.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Metals 9 (3), S. 348. DOI: 10.3390/met9030348
  Effect of the wall thickness on the forming behavior and welding result during magnetic pulse welding Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Hahn, M.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Material Science and Engineering Technology 212, pp. 150. DOI: 10.1002/mawe.201900024.
  Experimental study on the magnetic pulse welding process of large aluminum tubes on steel rods Bellmann, J.; Schettler, S.; Dittrich, S.; Lueg-Althoff, J.; Schulze, S.; Hahn, M.; Beyer, E.; Tekkaya, A. E.
In: IOP Conference Series: Materials Science and Engineering 480, S. 12033.
  Fügen von Rohren durch elektromagnetische Umformung – Magnetpulsschweißen Lueg-Althoff, J.
In: Shaker, Herzogenrath
2018   
  Influence of the flyer kinetics on magnetic pulse welding of tubes Lueg-Althoff, J.; Bellmann, J.; Gies, S.; Schulze, S.; Tekkaya, A. E.; Beyer, E.
In: Journal of Materials Processing Technology 262, 2018, pp. 189–203.
DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.005
  Parameter Identification for Magnetic Pulse Welding Applications Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Key Engineering Materials 767, 2018,
pp. 431–438.
DOI: 10.4028/www.scientific.net/KEM.767.431.
  Effects of Reactive Interlayers in Magnetic Pulse Welding Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Daehn, G. S., Tekkaya, A. E. (Eds.), High Speed Forming 2018,
Proceedings of the 8th International Conference, Columbus (Ohio), USA, 2018
  Influence of the Free Compression Stage on Magnetic Pulse Welding of Tubes Lueg-Althoff, J.; Bellmann, J.; Gies, S.; Schulze, S.; Tekkaya, A. E.; Beyer, E.
In: Daehn, G. S., Tekkaya, A. E. (Eds.), High Speed Forming 2018,
Proceedings of the 8th International Conference, Columbus (Ohio), USA, 2018
  New possibilities for process control and higher efficiency at magnetic pulse welding Bellmann, J.; Lueg-Althoff, J.; Dittrich, S.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: International Symposium ‘Tailored Joining’, Dresden, February 27–28, 2018
2017   
  Improving the Process Efficiency at Magnetic Pulse Welding (MPW) Bellmann, J.; Lueg-Althoff, J.; Schettler, S.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: 8th I2FG Meeting, Modeling Benchmark, & Workshop 2017, Berlin, November 28–29, 2017
  Measurement of Collision Conditions in Magnetic Pulse Welding Processes Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Journal of Physical Science and Application 7 (4), pp. 1–10.
DOI: 10.17265/2159-5348/2017.04.001, 2017
  Neue Möglichkeiten zur Prozessüberwachung und Effizienzsteigerung beim Magnetpulsschweißen Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Werkstoffwoche2017. DGM. Dresden, 28.09.2017
  Targeted Weld Seam Formation and Energy Reduction at Magnetic Pulse Welding (MPW) Bellmann, J.; Lueg-Althoff, J.; Schettler, S.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: eBIS 2017 (5), pp. 91–102. DOI: 10.17729/ebis.2017.5/10, 2017
2016   
  Measurement techniques for magnetic pulse welding Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: I²FG Workshop on Impulse Metalworking 2016, Nantes, December 01-02, 2016
  Measurement and analysis technologies for magnetic pulse welding – Established methods and new strategies Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Advances in Manufacturing, 2016, DOI: 10.1007/s40436-016-0162-5
  Magnetic Pulse Welding of Dissimilar Metals in Tube-to-Tube Configuration Lueg-Althoff, J.; Bellmann, J.; Gies, S.; Schulze, S.; Tekkaya, A. E.; Beyer, E.
In: American Welding Society and Japan Welding Society: Trends in Welding Research, Proceedings of the 10th International Conference,
Tokyo, Japan, pp. 87-90, 2016
  Magnetic Pulse Welding: Joining Within Microseconds – High Strength Forever Bellmann, J.; Lueg-Althoff, J.; Kirchhoff, G.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: American Welding Society and Japan Welding Society: Trends in Welding Research, Proceedings of the 10th International Conference,
Tokyo, Japan, pp. 91-94, 2016
  Magnetic Pulse Welding of Tubes: Ensuring the Stability of the Inner Diameter Lueg-Althoff, J.; Bellmann, J.; Gies, S.; Schulze, S.; Tekkaya, A. E.; Beyer, E.
In: Proceedings of the 6th Euro-Asian Pulsed Power Conference, Estoril, Portugal, 2016
  Magnetic Pulse Welding: Solutions for Process Monitoring within Pulsed Magnetic Fields Bellmann, J.; Lueg-Althoff, J.; Schulze, S.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Proceedings of the 6th Euro-Asian Pulsed Power Conference, Estoril, Portugal, 2016
  Analytical approach for magnetic pulse welding of sheet connections Hahn, M.; Weddeling, C.; Lueg-Althoff, J.; Tekkaya, A. E.
In: Journal of Materials Processing Technology 230, pp. 131–142, 2016
  Influence of selected coatings on the welding result during magnetic pulse welding Bellmann, J.; Lueg-Althoff, J.; Beyer, E.; Tekkaya, A. E.
In: International Symposium ‘Tailored Joining’,
Dresden, February 23–24, 2016
  Effects of Surface Coatings on the Joint Formation During
Magnetic Pulse Welding in Tube-to-Cylinder Configuration
Bellmann, J.; Lueg-Althoff, J.; Goebel, G.; Gies, S.; Beyer, E.; Tekkaya, A. E.
In: Tekkaya, A. E.; Kleiner, M. (Eds.), High Speed Forming 2016, Proceedings of the 7th International Conference,
Dortmund, Germany, pp. 279–288, 2016
  Workpiece positioning during magnetic pulse welding of aluminum-steel joints Lorenz, A.; Lueg-Althoff, J.; Bellmann, J.; Göbel, G.; Gies, S.; Weddeling, C.; Beyer, E.; Tekkaya, A. E.
In: Welding Journal 95 (3), pp. 101–109, 2016
  Influence of the Wall Thicknesses on the Joint Quality During Magnetic Pulse Welding in Tube-to-Tube Configuration Lueg-Althoff, J.; Schilling, B.; Bellmann, J.; Gies, S.; Schulze, S.; Tekkaya, A. E.; Beyer, E.
In: Tekkaya, A. E.; Kleiner, M. (Eds.), High Speed Forming 2016,
Proceedings of the 7th International Conference, Dortmund, Germany, pp. 259–268, 2016
2015   
  Influence of axial workpiece position in the coil for the electromagnetic pulse joining Bellmann, J.; Lueg-Althoff, J.; Lorenz, A.; Schulze, S.; Gies, S.; Tekkaya, A. E.; Beyer, E.
In: I²FG / PAK 343 Impulse Forming Workshop,
Dortmund, October 05–06, 2015
  Joining of aluminium tubes by magnetic pulse welding Lueg-Althoff, J.; Gies, S.; Weddeling, C.; Tekkaya, A. E.
In: European Aluminium Congress 2015, Düsseldorf, November 23–24, 2015
2014   
  Methods used in determining the optimal parameters in magnetic pulse welding Lorenz, A.; Göbel, G.
In: International Symposium ‘Tailored Joining’,
Dresden, February 27–28, 2014
  Influence of axial workpiece positioning during Magnetic Pulse Welding of Aluminum-Steel joints Lorenz, A.; Lueg-Althoff, J.; Göbel, G., Weddeling, C.; Beyer, E.; Tek-kaya, A. E.
In: Huh, H.; Tekkaya, A. E. (Eds.), High Speed Forming 2014, Proceedings of the 6th International Conference,
Daejeon, Korea, pp. 189–198, 2014
  Magnetic pulse welding by electromagnetic compression: Determination of the impact velocity Lueg-Althoff, J.; Lorenz, A.; Gies, S.; Weddeling, C.; Göbel, G.; Tekkaya, A. E.; Beyer, E.
In: Advanced Materials Research 966–967, pp. 489–499, 2014
 

back to working groups